- 產(chǎn)品描述
Q熱IgG(一、二階段)免疫熒光玻片試劑盒
Coxiella burnetii IgG IFA Kit
廣州健侖生物科技有限公司
主要用途:用于檢測人血清中的Q熱IgG(一、二階段)
產(chǎn)品規(guī)格:12 孔/張,10 張/盒
包括包柔氏螺旋體菌、布魯氏菌、貝納特氏立克次體、土倫桿菌、鉤端螺旋體、新型立克次體、恙蟲病、立克次體、果氏巴貝西蟲、馬焦蟲、牛焦蟲、利什曼蟲、新包蟲、弓形蟲、貓流感病毒、貓冠狀病毒、貓皰疹病毒、犬瘟病毒、犬細(xì)小病毒等病原微生物的 IFA、MIF、ELISA試劑。
Q熱IgG(一、二階段)免疫熒光玻片試劑盒
我司還提供其它進(jìn)口或國產(chǎn)試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細(xì)菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號二期2幢101-3室
【企業(yè)文化】
“當(dāng)然,進(jìn)一步的研究將需要確定PPARγ激活藥物對肺癌治療的療效,”他補充說。
紅血細(xì)胞、細(xì)菌、酵母細(xì)胞和抗原抗體。當(dāng)17世紀(jì)的科學(xué)家*次在光學(xué)顯微鏡下研究這些活的生物體時,他們看到了一個新的世界。微生物學(xué)誕生了,從此,光學(xué)顯微鏡成為研究生命科學(xué)的工具箱中zui重要的工具之一。
但在很長一段時間,光學(xué)顯微鏡無法突破一個物理局限,即所謂的阿貝衍射極限——德國物理學(xué)家恩斯特·阿貝于1873年提出的公式證明,受光的波長等因素影響,顯微鏡的分辨率是有限的。在20世紀(jì)的大部分時間,科學(xué)家們都認(rèn)為,光學(xué)顯微鏡永遠(yuǎn)無法看到小于光的波長一半的物體,也就是說,分辨率超不過0.2微米。雖然某些細(xì)胞的細(xì)胞器如線粒體的輪廓在光學(xué)顯微鏡下清晰可見,但它難以分辨更小的物體,這類似于能夠看到一個城市的建筑,卻不知道居民們?nèi)绾紊睢R浞至私饧?xì)胞的功能,就需要具備跟蹤單個分子活動的能力。
阿貝衍射極限仍然成立,但美國科學(xué)家埃里克·貝齊格、威廉·莫納和德國科學(xué)家斯特凡·黑爾借助熒光分子的幫助,巧妙地繞過了經(jīng)典光學(xué)的這一“束縛”,使光學(xué)顯微鏡發(fā)展到了一個新的層次——納米顯微鏡。現(xiàn)在,科學(xué)家們可以監(jiān)控細(xì)胞內(nèi)單個分子之間的相互作用,觀察與疾病相關(guān)的蛋白質(zhì)如何聚集,并在納米水平上跟蹤細(xì)胞分裂過程。三位科學(xué)家也因在超分辨率熒光顯微技術(shù)領(lǐng)域取得的成就而獲得2014年諾貝爾化學(xué)獎殊榮。
"Of course, further research will need to determine the efficacy of PPARγ-activating drugs in the treatment of lung cancer," he added.
Red blood cells, bacteria, yeast cells and antigen antibodies. When 17th-century scientists first studied these living organisms under a light microscope, they saw a new world. Microbiology was born, and optical microscopy became one of the most important tools in the life science toolkit ever since.
But for a long time, the optical microscope can not break through a physical limitation called the Abbe diffraction limit - the formula proposed by the German physicist Ernst Abbe in 1873 proves that the wavelength affected by light and other factors, the microscope The resolution is limited. For most of the 20th century, scientists agreed that optical microscopes could never see objects less than half the wavelength of light, that is, resolutions beyond 0.2 microns. Although the outline of some cells' organelles, such as mitochondria, is clearly visible under a light microscope, it is difficult to distinguish smaller objects, analogous to being able to see a city's buildings without knowing how the inhabitants live. To fully understand the function of cells, you need to have the ability to track the activities of a single molecule.
Abbe diffraction limit still holds, but American scientists Eric Bezig, William Mona and German scientist Stefan Hale skillfully circumvented the "bondage" of classical optics with the help of fluorescent molecules. , The optical microscope has developed to a new level - the nano-microscope. Now scientists can monitor the interactions between individual molecules in cells, see how disease-related proteins aggregate and track cell division at the nanoscale. The three scientists also won the 2014 Nobel Prize in Chemistry for their achievements in super-resolution fluorescence microscopy.