- 產(chǎn)品描述
鼠型斑疹傷寒立克次體IgG ELISA試劑盒
R. typhi IgG ELISA Kit
廣州健侖生物科技有限公司
主要用途:用于檢測(cè)人血清中的鼠型斑疹傷寒立克次體IgG抗體
產(chǎn)品規(guī)格:96T/盒
主要產(chǎn)品包括:包柔氏螺旋體菌、布魯氏菌、貝納特氏立克次體、土倫桿菌、鉤端螺旋體、新型立克次體、恙蟲(chóng)病、立克次體、果氏巴貝西蟲(chóng)、馬焦蟲(chóng)、牛焦蟲(chóng)、利什曼蟲(chóng)、新包蟲(chóng)、弓形蟲(chóng)、貓流感病毒、貓冠狀病毒、貓皰疹病毒、犬瘟病毒、犬細(xì)小病毒等病原微生物的 IFA、MIF、ELISA試劑。
鼠型斑疹傷寒立克次體IgG ELISA試劑盒
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無(wú)形體、蜱蟲(chóng)、恙蟲(chóng)、利什曼原蟲(chóng)、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲(chóng)病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢(xún)
歡迎咨詢(xún)2042552662
JL-FL31 | 康氏立克次氏體IgM ELISA | Rickettsia conorii IgM ELISA Kit | 用于檢測(cè)人血清中的康氏立克次氏體IgM抗體 |
JL-FL32 | 斑點(diǎn)熱立克次體IgG ELISA | Spotted fever group IgG ELISA Kit | 用于檢測(cè)人血清中的斑點(diǎn)熱立克次體IgG抗體 |
JL-FL33 | 斑疹傷寒立克次體IgG ELISA | Typhus group IgG ELISA Kit | 用于檢測(cè)人血清中的斑疹傷寒立克次體IgG抗體 |
JL-FL34 | 鼠型斑疹傷寒立克次體IgG免疫熒光玻片試劑盒 | Rickettsia typhi IgG IFA Kit | 用于檢測(cè)人血清中的鼠型斑疹傷寒立克次體IgG抗體 |
JL-FL35 | 鼠型斑疹傷寒立克次體IgG ELISA | R. typhi IgG ELISA Kit | 用于檢測(cè)人血清中的鼠型斑疹傷寒立克次體IgG抗體 |
JL-FL36 | 鼠型斑疹傷寒立克次體IgM ELISA | R. typhi IgM ELISA Kit | 用于檢測(cè)人血清中的鼠型斑疹傷寒立克次體IgG抗體 |
JL-FL37 | akari立克次體 IgG ELISA | R. akari IgG ELISA Kit | 用于檢測(cè)人血清中的akari立克次體IgG抗體 |
JL-FL38 | parkeri立克次體IgG ELISA | R. parkeri IgG ELISA Kit | 用于檢測(cè)人血清中的parkeri立克次體IgG抗體 |
JL-FL39 | montanensis立克次體IgG ELISA | R. montanensis IgG ELISA Kit | 用于檢測(cè)人血清中的montanensis立克次體IgG抗體 |
JL-FL40 | EB病毒衣殼IgG免疫熒光玻片試劑盒 | EBV Viral Capsid IgG IFA Kit | 用于檢測(cè)人血清中的EB病毒衣殼IgG抗體 |
JL-FL41 | EB病毒衣殼IgM免疫熒光玻片試劑盒 | EBV Viral Capsid IgM IFA Kit | 用于檢測(cè)人血清中的EB病毒衣殼IgM抗體 |
JL-FL42 | EB病毒早期抗原IgG免疫熒光玻片試劑盒 | EBV Early Antigens IgG IFA Kit | 用于檢測(cè)人血清中的EB病毒早期抗原IgG抗體 |
二維碼掃一掃
【公司名稱(chēng)】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-3室
【企業(yè)文化】
了解這種轉(zhuǎn)換有可能促成一些新的策略,在心臟病發(fā)作后、衰老過(guò)程中或在諸如糖尿病及高血壓等疾病中再生和生成新的心肌。
Hatzopoulos說(shuō):“如果我們可以了解損傷后發(fā)生的這種命運(yùn)轉(zhuǎn)換的分子調(diào)控機(jī)制,或許我們就可以采用某種化合物或藥物來(lái)恢復(fù)再生,生成肌肉而不是瘢痕。我們認(rèn)為這是一次機(jī)會(huì)來(lái)改善我們對(duì)心肌梗死后來(lái)到診所的患者的治療方式。
綠膿桿菌在免疫系統(tǒng)較弱的人當(dāng)中,可以引起嚴(yán)重的皮膚和肺部炎癥,特別是那些患有遺傳性疾病囊胞性纖維癥的人。當(dāng)細(xì)菌進(jìn)入人體細(xì)胞后,Gb3脂質(zhì)結(jié)合LecA蛋白并使細(xì)胞膜彎曲。荷蘭瓦格寧根大學(xué)的Christian Fleck教授在新研究中通過(guò)計(jì)算得出,這種結(jié)合足以將細(xì)菌包裹起來(lái)。
之前,研究人員只熟悉細(xì)菌侵染的方法,包括操控宿主細(xì)胞內(nèi)的信號(hào)。這項(xiàng)信號(hào)可控制肌動(dòng)蛋白纖維——細(xì)胞的肌肉:這些纖維可使來(lái)自?xún)?nèi)部的細(xì)胞被膜彎曲,并形成膜泡,細(xì)菌被吸收進(jìn)其中。
為了證明沒(méi)有肌動(dòng)蛋白該過(guò)程一樣能運(yùn)行,德國(guó)佛萊堡大學(xué)BIOSS生物信號(hào)研究中心生物研究所II的Thorsten Eierhoff博士和Winfried R?mer教授帶領(lǐng)的一個(gè)研究小組,觀察了假單胞菌(Pseudomonas bacteria)對(duì)合成膜泡的影響。膜泡既不包含肌動(dòng)蛋白,也不包含其他細(xì)胞組分,只有脂質(zhì)Gb3。當(dāng)離體膜停靠到表面上時(shí),就在細(xì)菌周?chē)郫B和關(guān)閉。然而,只有當(dāng)細(xì)菌產(chǎn)生LecA蛋白時(shí),才會(huì)發(fā)生這個(gè)包裝過(guò)程。實(shí)驗(yàn)表明,假單胞菌使用這種脂質(zhì)拉鏈,使其自身進(jìn)入細(xì)胞,而無(wú)需操控肌動(dòng)蛋白。
研究人員證明,LecA和Gb3對(duì)于細(xì)菌到人類(lèi)肺細(xì)胞的入侵也非常重要:當(dāng)這一對(duì)分子消失時(shí),透過(guò)細(xì)胞的細(xì)菌數(shù)量減少了70%。這些研究結(jié)果使R?mer的研究小組能夠發(fā)現(xiàn)一種潛在的藥物,來(lái)對(duì)抗綠膿桿菌。美國(guó)華盛頓州立大學(xué)的科學(xué)家已經(jīng)確定DNA修復(fù)的關(guān)鍵步驟,這有可能有助于開(kāi)發(fā)遺傳性疾病的靶向基因治療法,如“月球來(lái)的孩子”和結(jié)腸癌的常見(jiàn)形式。
這種疾病是由錯(cuò)誤的DNA修復(fù)系統(tǒng)引起的,該系統(tǒng)提高患癌癥和其它條件的風(fēng)險(xiǎn)。相關(guān)文章發(fā)表于2014年8月18日的《PNAS》雜志上。
董事教授Michael Smerdon和博士后研究員Peng Mao發(fā)現(xiàn),當(dāng)DNA被破壞時(shí),一個(gè)特定的蛋白質(zhì)首先必須被“解開(kāi)扣子”,以方便獲取DNA的“修理隊(duì)”。如果沒(méi)有蛋白解開(kāi)這一過(guò)程,進(jìn)入受損位點(diǎn)的這一過(guò)程會(huì)被染色質(zhì)的緊湊排列的基因和蛋白質(zhì)阻攔。
Understanding this transition may lead to new strategies to regenerate and generate new myocardium during a heart attack, during aging or in diseases such as diabetes and hypertension.
Hatzopoulos said: "If we can understand the molecular mechanisms of this fate shift that occur after a lesion, perhaps we could use a compound or drug to regain regeneration and produce muscle instead of scar, and we think this is an opportunity to improve us Treatment of patients who come to the clinic after myocardial infarction.
Pseudomonas aeruginosa can cause severe skin and lung inflammation in people with weakened immune systems, especially those with hereditary cystic fibrosis. When bacteria enter human cells, Gb3 lipids bind LecA protein and bend the cell membrane. Professor Christian Fleck from Wageningen University in the Netherlands calculated in a new study that this combination is enough to encapsulate the bacteria.
Previously, researchers were only familiar with methods of bacterial infection, including manipulating signals in host cells. This signal controls the actin fibers - the cells' muscles: these fibers bend the envelope of cells from inside and form vesicles, into which bacteria are absorbed.
To demonstrate that this process works without actin, a team led by Dr. Thorsten Eierhoff and Prof. Winfried Römer at the Institute of Biology II at the BIOSS Biosignal Research Center, University of Freiburg, Freiburg, Germany, observed that Pseudomonas bacteria on synthetic vesicles. The vesicles neither contain actin nor other cellular components, only lipid Gb3. When the detachment membrane stops on the surface, it folds and closes around the bacteria. However, this process of packaging occurs only when the bacteria produce LecA protein. Experiments have shown that Pseudomonas uses this lipid zipper to allow itself to enter cells without manipulating actin.
Researchers have demonstrated that LecA and Gb3 are also important for the invasion of bacteria into human lung cells: When the pair of molecules disappears, the number of bacteria that pass through the cells is reduced by 70%. These findings led R? Mer's team to discover a potential drug against Pseudomonas aeruginosa. Scientists at Washington State University have identified key steps in DNA repair that could potentially help target gene therapy for the development of genetic diseases such as the common form of "child from the moon" and colon cancer.
The disease is caused by a faulty DNA repair system that increases the risk of cancer and other conditions. The article was published in PNAS magazine on August 18, 2014.
Director Professor Michael Smerdon and postdoctoral fellow Peng Mao have found that a particular protein must first be "unbuttoned" to facilitate access to DNA's "repair team" when the DNA is destroyed. Without this process of protein unwinding, the process of getting into a damaged site is blocked by tightly packed genes and proteins in the chromatin.