- 產(chǎn)品描述
貓杯狀病毒IgG免疫熒光玻片
Feline Calicivirus IgG IFA Substrate slide
廣州健侖生物科技有限公司
主要用途:用于檢測(cè)貓血清中貓杯狀病毒IgG抗體
產(chǎn)品規(guī)格:12 孔/張,10 張/盒
主要產(chǎn)品包括:包柔氏螺旋體菌、布魯氏菌、貝納特氏立克次體、土倫桿菌、鉤端螺旋體、新型立克次體、恙蟲病、立克次體、果氏巴貝西蟲、馬焦蟲、牛焦蟲、利什曼蟲、新包蟲、弓形蟲、貓流感病毒、貓冠狀病毒、貓皰疹病毒、犬瘟病毒、犬細(xì)小病毒等病原微生物的 IFA、MIF、ELISA試劑。
貓杯狀病毒IgG免疫熒光玻片
我司還提供其它進(jìn)口或國產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無形體、蜱蟲、恙蟲、利什曼原蟲、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
JL-FL54 | 牛雙芽巴貝西蟲免疫熒光玻片 | babesia bigemina IFA Substrate slide |
JL-FL55 | 牛雙芽巴貝西蟲免疫熒光試劑盒 | babesia bigemina IFA Kit |
JL-FL56 | 牛巴貝西蟲免疫熒光玻片 | babesia bovis IFA Substrate slide |
JL-FL57 | 牛巴貝西蟲免疫熒光試劑盒 | babesia bovis IFA Kit |
JL-FL58 | 駑巴貝西蟲免疫熒光玻片 | babesia caballi IFA Substrate slide |
JL-FL59 | 駑巴貝西蟲免疫熒光試劑盒 | babesia caballi IFA Kit |
JL-FL60 | 馬泰勒蟲免疫熒光玻片 | theileria equi IFA Substrate slide |
JL-FL61 | 馬泰勒蟲免疫熒光試劑盒 | theileria equi IFA Kit |
JL-FL62 | 利什曼蟲IgG免疫熒光試劑盒 | Leishmania IgG IFA Kit |
JL-FL63 | 新孢子蟲IgG免疫熒光試劑盒(檢測(cè)狗) | Neospora caninum IgG IFA Kit |
JL-FL64 | 新孢子蟲IgG免疫熒光試劑盒(檢測(cè)馬) | Neospora caninum IgG IFA Kit |
JL-FL65 | Feline Calicivirus IgG IFA Substrate slide | |
JL-FL66 | 貓冠狀病毒IgG免疫熒光玻片 | Feline Coronavirus IgG IFA Substrate slide |
JL-FL67 | 貓皰疹病毒IgG免疫熒光玻片 | Feline Herpesvirus IgG IFA Substrate slide |
JL-FL68 | 犬瘟病毒IgG免疫熒光玻片 | Canine Distemper IgG IFA Substrate slide |
JL-FL69 | 犬細(xì)小病毒IgG免疫熒光玻片 | Canine Parvovirus IgG IFA Substrate slide |
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-3室
【企業(yè)文化】
由于脂肪的存在,厚組織都是不透光的。要進(jìn)行成像就得把組織切得特別薄,問題是這樣就無法獲得組織的3D結(jié)構(gòu)。近年來出現(xiàn)了一些通過去除脂肪讓組織變透明的方法,不過這些方法大多需要在組織透明化之前,構(gòu)建和表達(dá)發(fā)熒光的目標(biāo)蛋白。隨后,斯坦福大學(xué)的Karl Deisseroth開發(fā)出CLARITY技術(shù),該技術(shù)允許人們?cè)诮M織透明化之后,使用標(biāo)記抗體或核酸探針,大大拓展了組織透明化的應(yīng)用。不過CLARITY處理組織仍有大小限制,Deisseroth說。
在本研究中,文章的資深作者Viviana Gradinar將自己的全身組織透明化技術(shù)稱為PARS(perfusion assisted agent release in situ)。該技術(shù)在CLARITY技術(shù)的基礎(chǔ)上,將透明劑持續(xù)泵入動(dòng)物的循環(huán)系統(tǒng)(或者通過腦脊液管道泵入大腦),讓試劑逐漸進(jìn)入組織。Gradinaru等人利用PARS建立了幾乎*透明的小鼠和小鼠器官,并用熒光抗體在其中揭示不同的細(xì)胞和結(jié)構(gòu)。
“這是一次重要的技術(shù)進(jìn)步,”麻省大學(xué)的Guangping Gao教授評(píng)論道,他的研究方向是開發(fā)腺病毒相關(guān)載體用于基因治療。“可以為我們揭示病毒如何穿過血管進(jìn)入細(xì)胞,以及宿主如何與病毒載體相互作用。”
Gradinaru指出,PARS特別適合用來觀察機(jī)體中的長神經(jīng)元。“這一方法可以幫助人們定位周圍神經(jīng)系統(tǒng),”她說。
PARS可以同時(shí)定位DNA、RNA和蛋白,“但仍然受到抗體擴(kuò)散能力的限制,”Gradinaru說。因此在使用這一技術(shù)時(shí),使用納米抗體等較小的標(biāo)記。另外,數(shù)據(jù)處理也是PARS面臨的一大挑戰(zhàn)。
日本RIKEN和東京大學(xué)的科學(xué)家們,將組織脫色與光切熒光顯微鏡結(jié)合起來,成像了多種器官乃至整個(gè)生物體,得到了極為詳細(xì)的內(nèi)部圖像。這一成果發(fā)表在本期的Cell雜志上。理解生命的運(yùn)作方式是一直系統(tǒng)生物學(xué)的*夢(mèng)想。將組織和生物體透明化然后進(jìn)行單細(xì)胞分辨率的精確成像,將成為實(shí)現(xiàn)這一夢(mèng)想的全新途徑。
研究人員在這項(xiàng)研究中采用了一種名為CUBIC(Clear, Unobstructed Brain Imaging Cocktails and Computational Analysis)的方法,他們之前曾用這個(gè)方法成像了整個(gè)大腦。大腦組織富含脂類比較容易透明化,但機(jī)體其他部分含有許多能夠吸收光的生色團(tuán)(chromophore),比如血紅素heme。血紅素是血紅蛋白的重要組分,存在于機(jī)體的絕大多數(shù)組織,并且會(huì)阻斷光線。
Thick tissues are opaque due to the presence of fat. For imaging, the tissue must be cut so thin that the problem is that the 3D structure of the tissue can not be obtained. In recent years there have been some ways to make tissues transparent by removing fat, but most of these methods require the construction and expression of a fluorescent target protein before the tissue is transparent. Subsequently, Karl Deisseroth of Stanford University developed CLARITY technology, which allows people to use labeled antibodies or nucleic acid probes after tissue is transparent, greatly expanding the use of tissue transparency. However, CLARITY processing organizations still have size restrictions, Deisseroth said.
In the present study, Viviana Gradinar, a senior author of the article, described his whole-body tissue opacification technique as PARS (perfusion assisted agent release in situ). Based on CLARITY technology, this technology pumped clear agent continuously into the animal's circulatory system (or into the brain through the cerebrospinal fluid) to allow the gradual entry of the agent into the tissue. Gradinaru et al. Used PARS to establish almost compley transparent mouse and mouse organs, revealing different cells and structures with fluorescent antibodies.
"This is an important technological advance," said Professor Guangping Gao at the University of Massachusetts. His research interests include the development of adenovirus-associated vectors for gene therapy. "It shows us how the virus goes through the bloodstream into the cell and how the host interacts with the viral vector."
Gradinaru notes that PARS is particularly well suited for observing long neurons in the body. "This method helps people to locate the peripheral nervous system," she said.
PARS can position DNA, RNA and proteins simultaneously, "but is still limited by the ability of antibodies to proliferate," said Gradinaru. Therefore, in the use of this technology, it is best to use smaller labels such as Nanobodies. In addition, data processing is also a major challenge facing PARS.
Scientists at Japan's RIKEN and the University of Tokyo combined tissue decolorization with light-cut fluorescence microscopy to image a wide range of organs and even entire organisms and obtain extremely detailed internal images. This result is published in the current issue of Cell magazine. Understanding the way life works is the ultimate dream of systems biology. Transparency of tissues and organisms followed by precise imaging of single-cell resolution will be a new way to achieve this dream.
In this study, the researchers used a method called CUBIC (Clear, Unobstructed Brain Imaging Cocktails and Computational Analysis), which they had previously used to image the entire brain. Cerebral tissue is more lipid-rich and more transparent, but the rest of the body contains many chromophores that absorb light, such as heme. Heme is an important component of hemoglobin, exists in the vast majority of the body's tissues, and will block the light.