- 產(chǎn)品描述
EIKEN嗜肺軍團(tuán)菌快速檢測試劑(免疫捕獲法)
廣州健侖生物科技有限公司
主要用途:用于檢測尿樣中嗜肺軍團(tuán)菌血清型1抗原,以支持軍團(tuán)菌感染的診斷。
產(chǎn)品規(guī)格:20T/盒
存儲條件:2-30℃
EIKEN嗜肺軍團(tuán)菌快速檢測試劑(免疫捕獲法)
我司還提供其它進(jìn)口或國產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無形體、蜱蟲、恙蟲、利什曼原蟲、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細(xì)菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
【產(chǎn)品介紹】
貨號 | 產(chǎn)品名稱 | 產(chǎn)品描述 | 產(chǎn)品規(guī)格 | 保存條件 |
JL-ET01 | 免疫捕獲諾如病毒檢測試劑盒 | 用于檢測糞便標(biāo)本中的諾如病毒抗原,以支持諾如病毒感染的診斷。 | 20T/盒 | 2-30℃ |
JL-ET02 | 免疫捕獲軍團(tuán)菌檢測試劑盒 | 用于檢測尿樣中嗜肺軍團(tuán)菌血清型1抗原,以支持軍團(tuán)菌感染的診斷。 | 20T/盒 | 2-30℃ |
JL-ET03 | 免疫捕獲肺炎鏈球菌檢測試劑盒 | 用于檢測尿標(biāo)本中的肺炎鏈球菌抗原,以支持肺炎鏈球菌感染的診斷。 | 20T/盒 | 2-30℃ |
EIKEN
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號二期2幢101-3室
【企業(yè)文化】
在該項研究中,研究人員*綜合利用HDAdV,TALEN和CRISPR三種不同的方法,對鐮刀形細(xì)胞貧血癥患者iPSC中發(fā)生突變的血紅蛋白基因(HBB)進(jìn)行靶向矯正。發(fā)現(xiàn)這三種基因矯正方法對于HBB基因具有類似的打靶效率。同時,全基因組深度測序結(jié)果顯示,TALEN和HDAdV在基因矯正過程中zui大限度地保持了病人基因組的完整性,從而提示了這些方法的安全可靠性。
進(jìn)而,研究人員充分整合TALEN和HDAdV作為基因組靶向修飾工具的*優(yōu)勢,發(fā)展出一種新型高效的疾病基因矯正載體HDAdV。HDAdV同時具有TALEN的特異性基因組切割和HDAdV的高導(dǎo)入效率及精確的大片段同源重組效率。同一個HDAdV可有效涵蓋HBB基因座上所有可能包含的遺傳突變,因此可被廣泛應(yīng)用于包括鐮刀形細(xì)胞貧血癥和地中海貧血癥在內(nèi)的不同種類的血紅蛋白疾病的基因修復(fù)。實驗結(jié)果表明,HDAdV介導(dǎo)的基因修復(fù)比單獨使用TALEN和CPRISPR在效率上約高數(shù)十倍,可被應(yīng)用于不同種類的人類致病基因突變的靶向矯正。
該研究打消了干細(xì)胞和再生醫(yī)學(xué)研究領(lǐng)域針對疾病基因靶向修復(fù)安全性的憂慮;同時,新型基因矯正載體的問世也將有助于加速干細(xì)胞臨床轉(zhuǎn)化的步伐。Cell Stem Cell雜志同期發(fā)表的題為“What’s Changed with Genome Editing?”的Preview評論說:“這些發(fā)現(xiàn)將無疑鼓舞將基因組靶向編輯技術(shù)進(jìn)一步應(yīng)用于疾病研究和臨床治療”。
該工作得到科技部、基金委及中科院干細(xì)胞與再生醫(yī)學(xué)戰(zhàn)略先導(dǎo)專項等資助。
在細(xì)胞核中DNA纏繞著稱之為組蛋白的特殊蛋白質(zhì)。通常情況下,組蛋白使得DNA緊密包裝,阻止了基因表達(dá)和DNA復(fù)制,后兩者是細(xì)胞生長和分裂的必要條件。為了讓這些至關(guān)重要的功能得以執(zhí)行,需要由一種叫做乙酰輔酶A(acetyl-CoA)的關(guān)鍵分子提供乙?;?,附著到組蛋白上對其進(jìn)行修飾。這種附著使得DNA松弛,允許DNA復(fù)制和基因表達(dá)。這一稱作為“DNA表觀遺傳調(diào)控”的機(jī)制對于正常的功能,以及心臟衰竭或癌癥等常見疾病均極為重要。然而直到現(xiàn)在,對于細(xì)胞核生成組蛋白乙?;璧囊阴]o酶A的機(jī)制仍不清楚。
In this study, for the first time, the researchers used three different approaches, HDAdV, TALEN and CRISPR, to target-correct hemoglobin gene (HBB) mutations in iPSC in patients with sickle cell anemia. These three methods of gene correction were found to have similar targeting efficiency to HBB genes. At the same time, genome-wide deep sequencing showed that TALEN and HDAdV kept the integrity of the patient's genome during gene correction, which indicated the safety and reliability of these methods.
Furthermore, the researchers fully integrated the unique advantages of TALEN and HDAdV as genomics-targeted modifiers to develop a new and efficient disease-modifying gene, HDAdV. HDAdV has both TALEN specific genomic cleavage and HDAdV high import efficiency and accurate large fragment homologous recombination efficiency. The same HDAdV effectively covers all possible genetic mutations in the HBB locus and therefore can be widely used for gene repair of different kinds of hemoglobin diseases including sickle cell anemia and thalassemia. The experimental results show that HDAdV-mediated gene repair is about a dozen times more efficient than TALEN and CPRISPR alone and can be used to target different types of human pathogenic mutations.
The study dispelled concerns about the safety of disease-targeted gene repair in stem cell and regenerative medicine research. Meanwhile, the advent of a new gene correction vector will also help accelerate the clinical transformation of stem cells. Preview comments from Cell Stem Cell, titled "What's Changed with Genome Editing?", Said: "These findings will undoubtedly encourage the further application of genome-targeted editing techniques in disease research and clinical treatment."
The work was funded by the Ministry of Science and Technology, the Commission and the CAS Stem Cell and Regenerative Medicine Strategy Pilot Project.
In the nucleus, DNA wraps around special proteins called histones. Typically, histones make DNA tightly packed, preventing gene expression and DNA replication, both of which are necessary for cell growth and division. To enable these crucial functions to be performed, it is necessary to provide an acetyl group from a key molecule called acetyl-CoA, which is attached to the histone to modify it. This attachment relaxes the DNA, allowing DNA replication and gene expression. This mechanism, called "DNA epigenetic regulation," is crucial for normal function and for common diseases such as heart failure or cancer. Until now, however, the mechanism of acetyl-CoA required for acetylation of histones in nucleus formation remained unclear.