- 產(chǎn)品描述
EIKEN肺炎鏈球菌快速檢測(cè)卡
廣州健侖生物科技有限公司
主要用途:用于檢測(cè)尿標(biāo)本中的肺炎鏈球菌抗原,以支持肺炎鏈球菌感染的診斷。
產(chǎn)品規(guī)格:20T/盒
存儲(chǔ)條件:2-30℃
EIKEN肺炎鏈球菌快速檢測(cè)卡
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無(wú)形體、蜱蟲(chóng)、恙蟲(chóng)、利什曼原蟲(chóng)、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲(chóng)病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
【產(chǎn)品介紹】
貨號(hào) | 產(chǎn)品名稱 | 產(chǎn)品描述 | 產(chǎn)品規(guī)格 | 保存條件 |
JL-ET01 | 免疫捕獲諾如病毒檢測(cè)試劑盒 | 用于檢測(cè)糞便標(biāo)本中的諾如病毒抗原,以支持諾如病毒感染的診斷。 | 20T/盒 | 2-30℃ |
JL-ET02 | 免疫捕獲軍團(tuán)菌檢測(cè)試劑盒 | 用于檢測(cè)尿樣中嗜肺軍團(tuán)菌血清型1抗原,以支持軍團(tuán)菌感染的診斷。 | 20T/盒 | 2-30℃ |
JL-ET03 | 免疫捕獲肺炎鏈球菌檢測(cè)試劑盒 | 用于檢測(cè)尿標(biāo)本中的肺炎鏈球菌抗原,以支持肺炎鏈球菌感染的診斷。 | 20T/盒 | 2-30℃ |
EIKEN
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-3室
【企業(yè)文化】
在小鼠中進(jìn)行的這項(xiàng)研究也顯示腎臟自我更新的能力。不是單一型的腎干細(xì)胞就可替換任何丟失或受損的腎臟組織,而是駐留在腎臟的不同部分稍微??更專門的干細(xì)胞產(chǎn)生每個(gè)類型的腎組織??內(nèi)的新細(xì)胞。
“這就像有分支的樹(shù),其中每個(gè)分支考慮其自身的成長(zhǎng),而不是依賴于軀干的照顧,”德克爾說(shuō)。
科學(xué)家還發(fā)現(xiàn),這些細(xì)胞是通過(guò)一個(gè)名為Wnt蛋白的細(xì)胞通路的活化作出生長(zhǎng)的決定。Rinkevich說(shuō),即使腎上皮細(xì)胞的數(shù)量看起來(lái)一樣,zui健壯腎臟形成能力可追溯到前體細(xì)胞中的Wnt信號(hào)被激活,并且只能生長(zhǎng)為某些特定類型的腎組織。“這提示了Wnt信號(hào)是負(fù)責(zé)新腎組織的成長(zhǎng)提供了一個(gè)治療目標(biāo),以通過(guò)促進(jìn)或恢復(fù)腎臟的再生能力,”他說(shuō)。“我們也許能夠打開(kāi)Wnt信號(hào)通路產(chǎn)生新的腎臟形成細(xì)胞。”
研究人員說(shuō),這項(xiàng)研究發(fā)現(xiàn)對(duì)于科學(xué)家試圖在實(shí)驗(yàn)室創(chuàng)造腎部分有著至關(guān)重要的影響。
然而,他們警告說(shuō),這樣的進(jìn)步并不迫在眉睫。“為了在實(shí)驗(yàn)室里長(zhǎng)出整個(gè)腎臟是復(fù)雜的,因?yàn)槲覀冃枰獏f(xié)調(diào)許多不同種類的前體細(xì)胞的活性,” 德克爾說(shuō)。“這不象血液和免疫系統(tǒng)可以從一種類型的干細(xì)胞再生。”
奧地利科學(xué)技術(shù)研究所(IST)的副教授Harald Janovjak,與維也納醫(yī)學(xué)大學(xué)癌癥研究學(xué)會(huì)的副教授邁克爾·格呂施,一起利用光“遙控”癌細(xì)胞的行為,相關(guān)文章發(fā)表于本周的EMBO雜志上。這項(xiàng)工作*將光遺傳學(xué)應(yīng)用到癌癥研究的新領(lǐng)域。
為了解細(xì)胞信號(hào)的動(dòng)態(tài),研究人員需要將膜受體蛋白激活和使其失活,膜受體蛋白作為一個(gè)細(xì)胞內(nèi)外世界之間的中轉(zhuǎn)站。理想情況下,這種激活在短時(shí)間(幾秒到幾分鐘)以及近的目標(biāo)位置(微米到毫米)內(nèi)發(fā)生。然而,如此高水平的活化精密度不能使用當(dāng)前的藥理學(xué)和遺傳學(xué)的方法來(lái)實(shí)現(xiàn)。光遺傳學(xué)利用光來(lái)控制細(xì)胞的活性,以及具有在時(shí)間和空間上精確地被應(yīng)用和移動(dòng)(施加和除去)的優(yōu)點(diǎn)。Janovjak,格呂施和同事重新設(shè)計(jì)受體酪氨酸激酶(RTKs),在光的控制下,感測(cè)生長(zhǎng)因子和激素的必要的細(xì)胞表面受體。
This study, conducted in mice, also shows the kidney's ability to self-renew. Rather than a single type of kidney stem cell that replaces any lost or damaged kidney tissue, it resides in a slightly more specialized, more specialized stem cell that produces new cells within each type of kidney tissue.
"It's like a tree with branches, each of which takes into account its own growth, not its torso care," Decker said.
Scientists also found that these cells are the decision to grow through the activation of a cellular pathway called Wnt protein. Rinkevich said that even though the number of renal epithelial cells looks the same, the most robust kidney formation can be traced back to the activation of Wnt signaling in precursor cells and can only grow to certain types of kidney tissue. "This suggests that Wnt signaling is responsible for the growth of new kidney tissue and provides a therapeutic target to promote or restore the regenerative capacity of the kidneys," he said. "We may be able to turn on the Wnt signaling pathway to produce new kidney-forming cells."
The researchers said the study found a crucial impact on scientists trying to create parts of the kidney in the lab.
However, they warned that such progress is not imminent. "To grow an entire kidney in a lab is complicated because we need to coordinate the activity of many different kinds of precursor cells," Decker said. "It's not like the blood and the immune system can regenerate from one type of stem cell."
Harald Janovjak, an associate professor at the Austrian Institute of Science and Technology (IST), and Michael Gruissch, an associate professor at the Institute for Cancer Research at the University of Wien University, are using light to "control" cancer cells in an article published in this week's EMBO magazine. This work, for the first time, applies optogenetics to new areas of cancer research.
To understand the dynamics of cell signaling, researchers need to activate and inactivate membrane receptor proteins, which act as a transit site between the cell's inner and outer cells. Ideally, this activation occurs within short periods of time (seconds to minutes) and near target locations (micrometers to millimeters). However, such a high level of activation precision can not be achieved using current pharmacological and genetic approaches. Photogenetics uses light to control the activity of cells, and has the advantage of being precisely applied and moved (applied and removed) in time and space. Janovjak, Gruch and colleagues redesigned their receptor tyrosine kinases (RTKs) to sense the necessary cell surface receptors for growth factors and hormones under the control of light.