- 產(chǎn)品描述
lymphatic filariasis淋巴絲蟲病毒檢測試劑
廣州健侖生物科技有限公司
廣州健侖長期供應(yīng)各種生物原料,主要代理品牌:美國Seracare、西班牙Certest、美國Fuller、美國NOVABIOS、 Cellabs等等。
Cellabs公司是一個(gè)的生物技術(shù)公司,總部位于澳大利亞悉尼。專門研發(fā)與生產(chǎn)針對(duì)熱帶傳染性疾病的免疫診斷試劑盒。其產(chǎn)品40多個(gè)國家和地區(qū)。1998年,Cellabs收購TropBio公司,進(jìn)一步鞏固其在研制熱帶傳染病、寄生蟲診斷試劑方面的位置。
lymphatic filariasis淋巴絲蟲病毒檢測試劑
該公司的Crypto/Giardia Cel IFA是國標(biāo)*推薦的兩蟲檢測IFA染色試劑、Crypto Cel Antibody Reagent是UK DWI水質(zhì)安全評(píng)估檢測的*抗體。
【Cellabs公司產(chǎn)品介紹】
公司的主要產(chǎn)品有:隱孢子蟲診斷試劑,賈第蟲診斷試劑,瘧疾診斷試劑,衣原體檢測試劑,絲蟲診斷試劑,錐蟲診斷試劑等。Cellabs 的瘧疾ELISA試劑盒成為臨床上的一個(gè)重要的診斷工具盒科研上的重要鑒定工具。其瘧疾抗原HRP-2 ELISA檢測試劑盒和瘧疾抗體ELISA檢測試劑盒已經(jīng)成為醫(yī)學(xué)研究所的*試劑盒。Cellabs產(chǎn)品主要包括以下幾種方法學(xué):直接(DFA)和間接(IFA)免疫熒光法,酶聯(lián)免疫吸附試驗(yàn)(ELISA),和膠體金快速測試。所有產(chǎn)品都是按照GMP、CE標(biāo)志按照ISO13485。
主要產(chǎn)品包括:隱孢子蟲診斷試劑,賈第蟲診斷試劑,瘧疾診斷試劑,衣原體檢測試劑,絲蟲診斷試劑,錐蟲診斷試劑等。
廣州健侖生物科技有限公司與cellabs達(dá)成代理協(xié)議,歡迎廣大用戶咨詢訂購。
我司還提供其它進(jìn)口或國產(chǎn)試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細(xì)菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
【Seracare產(chǎn)品介紹】
貨號(hào) | 產(chǎn)品名稱 | 產(chǎn)品描述 | 規(guī)格 | |
免疫熒光試劑盒(IFA kit) | ||||
KR1 | Crypto Cel | 隱孢子蟲(Cryptosporidium)間接免疫熒光檢測試劑 | 50 Test | |
KR2 | Crypto/Giardia Cel | 隱孢子蟲&賈第蟲(Cryptosporidium & Giardia)間接免疫熒光檢測試劑 | 50 Test | |
KG1 | Giardia Cel | 賈第蟲(Giardia)間接免疫熒光檢測試劑 | 50 Test | |
KC1 | Chlamydia Cel | 沙眼衣原體(Chlamydia trachomatis)間接免疫熒光檢測試劑 | 50 Test | |
KC2 | Chlamydia Cel LPS | 衣原體 lipopolysaccharide (LPS)間接免疫熒光檢測試劑 | 50 Test | |
KC3 | Chlamydia Cel Pn | 肺炎衣原體(Chlamydia pneumoniae)間接免疫熒光檢測試劑 | 50 Test | |
KP1 | Pneumo Cel | 卡氏肺孢子蟲(Pneumocystis carinii)間接免疫熒光檢測試劑 | 50 Test | |
KP2 | Pneumo Cel Indirect | 卡氏肺孢子蟲( Pneumocystis carinii)間接免疫熒光檢測試劑 | 50 Test | |
酶免試劑盒 ELISA kit | ||||
KG2 | Giardia CELISA | 賈第蟲(Giardia)ELISA kit | 96 Test | |
KE1 | Entamoeba CELISA Path | 溶組織內(nèi)阿米巴(Entamoeba histolytica) ELISA kit | 96 Test | |
KF1 & KF2 | Filariasis CELISA | 班氏絲蟲(Wuchereria bancrofti ) ELISA kit |
| |
KM2 | Malaria Antigen (HRP2) CELISA | 惡性瘧原蟲(Plasmodium falciparum) 抗原 ELISA kit | 192 Test | |
KMC3 | Pan Malaria Antibody CELISA | 間日、三日、惡性及卵形瘧疾(Malaria)ELISA IgG kit | 192 Test | |
KT2 | T. cruzi IgG CELISA | 克氏錐蟲(Trypanosoma cruzi) ELISA IgG kit | 192 Test | |
KT3 | Toxocara IgG CELISA | 弓首線蟲(Toxocara canis) ELISA IgG kit | 192 Test | |
KF3 | Filariasis Ab (Bm14) CELISA | 淋巴絲蟲病(lymphatic filariasis) ELISA IgG kit | 480 Test | |
KM7 | Quantimal™ pLDH Malaria CELISA | 瘧疾pLDH抗體檢測 ELISA kit | 96 Test |
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-3室
【企業(yè)文化】
同樣,延髓的呼氣神經(jīng)元下行沖動(dòng)除 引起脊髓呼氣肌運(yùn)動(dòng)神經(jīng)元興奮外,還抑制吸氣肌運(yùn)動(dòng)神經(jīng)元活動(dòng)。 延髓呼吸中樞具有內(nèi)在節(jié)律活動(dòng),在整體內(nèi),吸氣神經(jīng)元能發(fā)放陣發(fā) 性的成簇電位,每分鐘12~15次,與呼吸頻率相似,而呼氣神經(jīng)元無自 發(fā)性放電。呼吸中樞在貓的腦橋與延髓之間橫斷,保留延髓以下的部 分,動(dòng)物仍有節(jié)律性呼吸,表明延髓是產(chǎn)生原始的節(jié)律性呼吸活動(dòng)的 基本部位。但此時(shí)的呼吸不同于正常,呈不規(guī)則的喘息樣等呼吸形式 ,提示正常呼吸節(jié)律的形成還需要腦的其他部分參與。若在中腦與腦 橋之間橫斷腦干,保留腦橋以下的部分,則動(dòng)物呼吸無明顯改變。以 上結(jié)果表明,zui基本的呼吸中樞在延髓,而正常呼吸節(jié)律的形成有賴 于延髓與腦橋的共同配合。[1] 進(jìn)一步研究顯示,延髓的呼吸相關(guān)神 經(jīng)元可分為背側(cè)呼吸組(dorsal respiratory group,DRG)和腹側(cè) 呼吸組(ventral respiratory group,VRG)。背側(cè)呼吸組位于延 髓背內(nèi)側(cè),以吸氣神經(jīng)元為主,其軸突終止于脊髓頸、胸段的隔神經(jīng) 運(yùn)動(dòng)神經(jīng)元和肋間神經(jīng)運(yùn)動(dòng)神經(jīng)元。背側(cè)呼吸組的神經(jīng)元接受肺牽張 感受器、外周化學(xué)感受器等處的傳入沖動(dòng),起著整合傳入信息和調(diào)節(jié) 呼吸運(yùn)動(dòng)的作用。腹側(cè)呼吸組所含的吸氣神經(jīng)元和呼氣神經(jīng)元數(shù)目大 致相當(dāng)。其中的前包欽格復(fù)合體(pre-Botzinger complex)與呼吸 節(jié)律起源有關(guān)。[1] 呼吸神經(jīng)元相對(duì)集中于臂旁內(nèi)側(cè)核和相鄰的 Kolliker-Fuse(KF)核,合稱PBKF核。PBKF與延髓的呼吸神經(jīng)核團(tuán) 之間有雙向,形成調(diào)控呼吸的神經(jīng)網(wǎng)絡(luò)。在麻醉貓,切斷雙側(cè)迷 走神經(jīng),損毀PBKF可出現(xiàn)長吸式呼吸,提示該區(qū)的作用是限制吸氣, 促使吸氣向呼氣轉(zhuǎn)換,具有穩(wěn)定呼吸類型、減慢節(jié)律和影響呼吸時(shí)程 等呼吸調(diào)整作用。[1] 在貓的中腦水平切斷,動(dòng)物的呼吸無明顯改變 ,表明大腦皮層不是產(chǎn)生節(jié)律性呼吸的必需部位。
Similarly, the downward impulse of the medulla oblongata neurons inhibits the excitatory neurons of the expanses of the spinal cord and also inhibits the activity of the inspiratory muscle motor neurons. The medullary respiratory center has intrinsic rhythmic activity. In the whole, inspiratory neurons can deliver clustered potentials of 12 to 15 beats per minute, similar to the respiratory rate, and there is no spontaneous discharge of expiratory neurons. The respiratory center crosses between the cat's pons and the medulla oblongata and retains the portion below the medulla oblongata. The animal still has rhythmic breathing, indicating that the medulla oblongata is the basic site of primitive rhythmic respiratory activity. However, the breathing at this time is different from normal, with irregular breathing patterns such as wheezing, suggesting that the formation of normal breathing rhythm requires the participation of other parts of the brain. If the brain stem is crossed between the midbrain and the brain bridge and the portion below the pons is preserved, the animal's breathing will not change significantly. The above results indicate that the most basic respiratory center is in the medulla oblongata, and the formation of normal respiratory rhythm depends on the cooperation of the medulla oblongata and pons. [1] Further studies have shown that the medullary respiratory-related neurons can be divided into the dorsal respiratory group (DRG) and the ventral respiratory group (VRG). The dorsal respiratory group was located in the dorsal medial aspect of the medulla oblongata. The inspiratory neurons were predominant. The axons terminated at the septal cervical and thoracic septal motor neurons and intercostal motoneurons. The neurons in the dorsal breathing group receive afferent impulses at the lung stretch receptors, peripheral chemoreceptors, etc., and they function to integrate incoming information and regulate respiratory motion. The number of inspiratory neurons and expiratory neurons contained in the ventral respiratory group was approximay equivalent. Among them, the pre-Botzinger complex is related to the origin of respiratory rhythm. [1] Respiratory neurons are relatively concentrated in the parabrachial nucleus and adjacent Kolliker-Fuse (KF) nuclei, collectively known as PBKF nuclei. There is a two-way connection between PBKF and the respiratory nucleus of the medulla oblongata, forming a neural network that regulates breathing. In anaesthetized cats, cutting off the bilateral vagus nerve and damaging PBKF may result in long-breathing breathing, suggesting that the role of this area is to limit inhalation, promote inspiration to exhalation, have a stable breathing pattern, slow rhythm, and influence breathing schedules. Breath adjustment. [1] When the cat's midbrain level was cut off, there was no significant change in the animal's respiration, indicating that the cerebral cortex is not an essential site for rhythmic breathing. Clinically, the vegetative respiration can be maintained evenly and evenly. However, the upper center of the cerebral cortex has a regulating effect on respiration, and within a certain limit, it can breathe freely or deepen and accelerate breathing.